Elements of Riemannian Geometry
Professor Dr. Arshad Momen
August 07, 2021
PDF
A geodesic is commonly a curve representing in some sense the
shortest path between two points in a surface, or more generally in
a Riemannian manifold
We saw that manifolds are sets whose subsets have a bijective mapping
to subsets of $\mathbb{R}^n$. As there is a natural differentiable
structure on $\mathbb{R}^n$ the manifold hence inherits a diffentiable
structure on it too.
Figure: Map for Manifolds
Now now can thus import the concept of "distance" in $\mathbb{R}^n$ to
the manifold $\mathcal{M}$ via the existence of this bijection.
The metric (which is a rank-2 symmetric tensor) is given by the
existence of the symmetric form :
\begin{equation} ds^2 = g_{ij}(x) dx^i dx^j \Rightarrow (ds)^2=(d
\pmb{x})^T G~ (d \pmb{x}) \end{equation}
where $G $ is a symmetric and invertible matrix
representing the metric $g_{ij}$.
Let us consider a simple example:
In the first quadrant in the $xy$ plane we can introduce the
coordinates $(u,v)$ :
\begin{equation} xy=u;~~ y=vx \Rightarrow x= \sqrt{\frac{u}{v}}, ~~~~
y= \sqrt{u v} \end{equation}
So that $ dx= \frac{1}{2} \sqrt{\frac{u}{v}}( \frac{du}{u} -
\frac{dv}{v})$ and $dy = \sqrt{uv}( \frac{du}{u} + \frac{dv}{v})$
Plugging this back into $ds^2 = dx^2 + dy^2 $ and carrying out the
standard algebra one ends up with the matrix for the
$$ G = \left( \begin{array}{ll} \frac{
\left(\sqrt{\frac{u}{v}}+\sqrt{u v}\right)}{u^2} & ~~\frac{
\left(\sqrt{u v}-\sqrt{\frac{u}{v}}\right)}{u v} \\ \frac{
\left(\sqrt{u v}-\sqrt{\frac{u}{v}}\right)}{u v} & ~~\frac{
\left(\sqrt{\frac{u}{v}}+\sqrt{u v}\right)}{v^2} \end{array} \right)
$$
The presence of a metric thus allows us to define the arc length along
a curve $\pmb{x} = \pmb{x}(\tau)$, where $\tau$ is the parameter along
the arc:
\begin{equation} \int_A^B d\tau ~\sqrt{g_{ij}(\pmb{x})
\frac{d\pmb{x}^i}{d\tau} \frac{d\pmb{x}^j}{d\tau}} \label{length}
\end{equation}
An interesting property to note that this expression is invariant
under the reparameterization $\tau \rightarrow \tau'$ , establishing
that we are indeed measuring something geometrical related to the
curve.
The Geodesic
Our expression (\ref{length}) is valid for any curve. However
if one is interested in the shortest curve ( which is known as
geodesic) between two points, one has to minimize the expression
(\ref{length}) under a local change
\begin{equation} \pmb{x} \rightarrow \pmb{x'} \equiv \pmb{x} +\delta
\pmb{x} \label{varia} \end{equation}
in the function $\pmb{x} : \tau \rightarrow \mathbb{R}^n$. Note that
-
We can think of the variation, $\delta \pmb{x} = \pmb{x'} - \pmb{x}
\equiv \epsilon ~\pmb{v}$ as a vector field defined over the curve
in question.
-
The infinitesimal parameter $\epsilon$ is introduced just to
emphasize that we will only keep terms first order in $\epsilon$ in
our manipulations.
Let us rewrite (\ref{length}) as
\begin{equation} s = \int_A^B d\tau \sqrt{F}, \qquad ~~ F\equiv F[g,
\pmb{x} ] = g_{ij}(\pmb{x}) \dot{x}^i \dot{x}^j \label{length2}
\end{equation}
If $s $ is a local extrema ( just like 1D calculus ) its change under
the change (\ref{varia}) will be zero: $ \delta s =0$. Thus
\begin{equation} \delta s = \frac{1}{2} \int d\tau~ \frac{1}{\sqrt{F}}
\delta F =0 \label{vary} \end{equation}
Now this equation shows that if we extremize instead the functional:
$$ s'= \int_A^B d\tau ~F \Rightarrow \delta s' = \int_A^B d\tau
~\delta F $$
i.e. we will end up with the same local minima. One can see
$$ \delta F = \frac{\partial F}{\partial g_{ij}} \delta
g_{ij}(\pmb{x}) + \frac{\partial F}{\partial \dot{x}^i} \delta
\dot{x}^i = \dot{x}^i \dot{x}^j \delta g_{ij}(\pmb{x}) + 2
g_{ij}(\pmb{x}) \dot{x}^j \delta \dot{x}^i $$
Now some math gymnastics ( Sorry! Tokyo Olympics is on ):
$$ \delta \dot{x}^i = \frac{d}{d\tau} ( \delta x^i) \qquad \delta
g_{ij} = \frac{\partial g_{ij}}{\partial x^k } \delta x^k $$
So that
$$ \delta s' = \int_A^B d\tau \left[ \dot{x}^i \dot{x}^j
\frac{\partial g_{ij}}{\partial x^k } \delta x^k + 2 g_{kj} \dot{x}^j
\frac{d}{d\tau} ( \delta x^k) \right] $$
The second term can be integrated by parts :
$$\delta s' = \int_A^B d\tau \left[ \dot{x}^i \dot{x}^j \frac{\partial
g_{ij}}{\partial x^k } - 2 \frac{d}{d\tau}\left(g_{kj} \dot{x}^j
\right)\right] \delta x^k $$
The "boundary" term vanishes as $\delta \pmb{x}$ vanish there.
So the geodesic equation can be obtained from the condition:
$$ \frac{d}{d\tau}\left(g_{kj} \dot{x}^j \right) - \frac{1}{2}
\dot{x}^i \dot{x}^j \frac{\partial g_{ij}}{\partial x^k } = g_{jk}
\ddot{x}^k + \frac{\partial g_{jk}}{\partial x^i} \dot{x}^i \dot{x}^j
- \frac{1}{2} \dot{x}^i \dot{x}^j \frac{\partial g_{ij}}{\partial x^k
} = 0 $$
As $\dot{x}^i \dot{x}^j $ is symmetric under the exchange of the
indices $ i \leftrightarrow j$ we can rewrite the 2nd term
$$ \frac{\partial g_{jk}}{\partial x^i} \dot{x}^i \dot{x}^j =
\frac{1}{2} \left( \frac{\partial g_{jk}}{\partial x^i} +
\frac{\partial g_{ik}}{\partial x^j} \right)\dot{x}^i \dot{x}^j. $$
Putting all of these together
$$ g_{jk}( \pmb{x}) \ddot{x}^k + \frac{1}{2} \left[ \frac{\partial
g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j}
-\frac{\partial g_{ij}}{\partial x^k} \right] \dot{x}^i \dot{x}^j = 0.
$$
As $G=\{g_{jk}\}$ is an invertible matrix, we can remove the $g_{jk}$
from the first term :
\begin{equation} \ddot{x}^m + \Gamma^m_{ij} \dot{x}^i \dot{x}^j =0
\end{equation}
where
$$ \Gamma^m_{ij} \equiv \frac{1}{2} g^{mk} \left[ \frac{\partial
g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j}
-\frac{\partial g_{ij}}{\partial x^k} \right] $$
which is known as Christoffel's (second) symbol. Despite carrying
several indices it is not a tensor!
Note $g^{ij}$ are the matrix elements of the inverse $G^{-1}$.