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Recap

We saw that manifolds are sets whose subsets have a bijective
mapping to subsets of Rn. As there is a natural differentiable
structure on Rn the manifold hence inherits a diffentiable structure
on it too.

Now now can thus import the concept of “distance” in Rn to the
manifold M via the existence of this bijection.



The metric

The metric (which is a rank-2 symmetric tensor) is given by the
existence of the symmetric form :

ds2 = gij(x)dx idx j ⇒ (ds)2 = (dxxx)TG (dxxx) (1)

where G is a symmetric and invertible matrix representing the
metric gij .

Let us consider a simple example:
In the first quadrant in the xy plane we can introduce the
coordinates (u, v) :

xy = u; y = vx ⇒ x =

√
u

v
, y =

√
uv (2)

So that dx = 1
2

√
u
v (duu −

dv
v ) and dy =

√
uv(duu + dv

v )



Plugging this back into ds2 = dx2 + dy2 and carrying out the
standard algebra one ends up with the matrix for the

G =

 (
√

u
v
+
√
uv)

u2
(
√
uv−
√

u
v )

uv
(
√
uv−
√

u
v )

uv
(
√

u
v
+
√
uv)

v2


The presence of a metric thus allows us to define the arc length
along a curve xxx = xxx(τ), where τ is the parameter along the arc:∫ B

A
dτ

√
gij(xxx)

dxxx i

dτ

dxxx j

dτ
(3)

An interesting property to note that this expression is invariant
under the reparameterization τ → τ ′ , establishing that we are
indeed measuring something geometrical related to the curve.
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The Geodesic

Our expression (3) is valid for any curve. However if one is
interested in the shortest curve ( which is known as geodesic )
between two points, one has to minimize the expression (3) under
a local change

xxx → x ′x ′x ′ ≡ xxx + δxxx (4)

in the function xxx : τ → Rn. Note that

(a) we can think of the variation, δxxx = x ′x ′x ′ − xxx ≡ ε vvv as a vector
field defined over the curve in question.

(b) The infinitesimal parameter ε is introduced just to emphasize
that we will only keep terms first order in ε in our manipulations.
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Let us rewrite (3) as

s =

∫ B

A
dτ
√
F , F ≡ F [g ,xxx ] = gij(xxx)ẋ i ẋ j (5)

If s is a local extrema ( just like 1D calculus ) its change under the
change (4) will be zero: δs = 0. Thus

δs =
1

2

∫
dτ

1√
F
δF = 0 (6)

Now this equation shows that if we extremize instead the
functional:

s ′ =

∫ B

A
dτ F ⇒ δs ′ =

∫ B

A
dτ δF

i.e. we will end up with the same local minima.

One can see

δF =
∂F

∂gij
δgij(x) + 2

∂F

∂ẋm
δẋm = ẋ i ẋ jδgij(xxx) + 2gkj(xxx)ẋ jδẋk
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∂ẋm
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Now some math gymnastics

( Sorry! Tokyo Olympics is on ):

δẋm =
d

dτ
(δxm) δgij =

∂gij
∂xk

δxk

So that

δs ′ =

∫ B

A
dτ

[
ẋ i ẋ j

∂gij
∂xk

δxk + 2gkj ẋ
j d

dτ
(δxk)

]
The second term can be integrated by parts :

δs ′ =

∫ B

A
dτ

[
ẋ i ẋ j

∂gij
∂xk
− 2

d

dτ

(
gkj ẋ

j
)]
δxk

The “boundary” term vanishes as δxxx vanish there.
So the geodesic equation can be obtained from the condition:

d

dτ

(
gkj ẋ

j
)
− 1

2
ẋ i ẋ j

∂gij
∂xk

= gjk ẍ
k +

∂gjk
∂x i

ẋ i ẋ j − 1

2
ẋ i ẋ j

∂gij
∂xk

= 0
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The Scary Equation

As ẋ i ẋ j is symmetric under the exchange of the indices i ↔ j we
can rewrite the 2nd term

∂gjk
∂x i

ẋ i ẋ j =
1

2

(
∂gjk
∂x i

+
∂gik
∂x j

)
ẋ i ẋ j .

Putting all of these together

gjk(xxx)ẍk +
1

2

[
∂gjk
∂x i

+
∂gik
∂x j
−
∂gij
∂xk

]
ẋ i ẋ j = 0.

As G = {gjk} is an invertible matrix, we can remove the gjk from
the first term :

ẍm + Γm
ij ẋ

i ẋ j = 0 (7)

where

Γm
ij ≡

1

2
gmk

[
∂gjk
∂x i

+
∂gik
∂x j
−
∂gij
∂xk

]
Note g ij are the matrix elements of the inverse G−1.


