
Creating an Open-AI gym like environment for
Bangladeshi game Shologuti using Unity 3D and ML-

Agents

Samin Bin Karim

ID: 1720049

Supervised by

Dr. Amin Ahsan Ali

Department of Computer Science & Engineering

Independent University Bangladesh

Outline of Presentation

• Introduction
• Brief background of Shologuti

• Shologuti as a research environment

• Motivation for project

• Objectives and Challenges

• Design and Implementation

• Results and Analysis

• Conclusion and Future work

Shologuti – A traditional board game

• A local board game popular
in rural Bangladesh and India

• Part of a family of games
including checkers

• That are all derived from Al-
Quirkat

Shologuti – Bangladesh/ India

Adugo Jaguar and Dogs – Brazil

Fanorona-Madagascar

War Enclosure - Sri Lanka

Al-Quirkat – Spain/Middle East

Tiger Game - Chile

History of Shologuti

• Each player starts with 16 guti

• Players make move in alternate
turns

• Must chose one legal move
• Can move to occupy adjacent empty

space

• Or jump over enemy guti to capture

• Multi capture moves are possible

• Must capture all 16 enemy guti to
win

Shologuti Game Rules

Multi-capture move

Branching Complexity = 14
(empirical estimate from simulator)

Shologuti board game as an AI research environment

• Ludo – Highest amount of research
done

• Carrom – Simulator for research
available (IIT Bombay)

• Shologuti – Neglected with little
prior research
• Only one paper that implements

MinMax tree searching algorithm for
Shologuti

Research in local games popular in Bangladesh

• Arcade Learning environment, ALE

• Open AI gym

• RLCard

• OpenSpiel

Simulation environments for RL

OPEN AI GYM OpenSpiel

ALE

• Temporal Difference (TD) Gammon –
1992

• AlphaGo - 2016

• Proximal Policy Optimization – 2017

• Soft Actor Critic - 2019

• Alpha Zero – 2017

• MuZero - 2019

State of the art RL algorithms

• Lack of research done for local games

• Poor availability of information for Shologuti

• Lack of availability of research environment for local games like
Shologuti

• Popularity of environments like Open AI Gym

Motivation

• Python accessible learning environment
• for training/benchmarking RL Agents

• Playable user-friendly Shologuti game
• Running on web and windows

• Benchmark state of the art RL algorithms in Shologuti environment

Objectives

• Learning Game Development with Unity game engine

• Struggle with Unity ML-Agents toolkit

• Learning Reinforcement learning and AI Agents

• Learning and applying basics of Software engineering

Challenges faced

• A playable Shologuti game for web and windows

• A research/learning environment for Shologuti

• Trained RL Agents capable of playing Shologuti

• Benchmarks of state of the art RL algorithms

• A Novel reward system Intermediate Goal States

Contributions

Python
Agent

https://saminbinkarim.itch.io/sholo-guti-project

• ML-Agents toolkit makes drastic changes in updates

• Future iterations of Unity ML-Agents may not support the Shologuti
environment

• Extending features of the environment requires C# and Unity knowledge

• Installing our python learning environment is not streamlined

Limitations

System Design and Implementation

Shologuti Game Features

• User-friendly HUD

• GUI Interface

• Custom art and animation

• Game modes
• Player vs Player

• Player vs AI

• AI vs AI

GUI Settings Menu

• Settings that can be controlled
using the GUI Interface

System Overview

Game theoretic organization of Shologuti game

Game Tree Board States

Making a Move

• Board setup

• Move generation/execution

• Rule checking

• Scoring system

• Multiple types of board game AI

Core Game System Implementation

• MinMax AI opponents with adjustable search depth

• RL-Agents capable of training with self-play

• Custom sensor actuator system

• Environment can train using Unity ML-Agents python training script

• Environment can be controlled through external python script

RL Component Features

MinMax Search Based Agents

• TD Agent
• Temporal Difference (TD)

• Actor Critic Agents
• Proximal Policy Optimization, PPO

• Soft-Actor Critic, SAC

Types of RL Agents

Observation Representation for Neural Networks

Temporal Difference (TD) Agent Decision/Inference

Actor Critic (AC) Agent Decision/Inference

Temporal Difference (TD) Neural Network Architecture

Actor Critic 1 Neural Network Architecture

Actor Critic 2 Neural Network Architecture

Agent Training with Unity ML-Agents Trainer

Agent Training with Custom RL Algorithms

State and Action Mirroring

Generalized RL Algorithm

Settings for RL Component

• The type of enemy to train
against

• Difficulty of the type of enemy
selected

• Stepping mode toggle

• Animation toggle

• Autoplay toggle

Stepping Mode

Connecting to Environment with Python

• Video or live demo

Using Unity ML-Agents Trainer to Train Agents

• Video or live demo

Results and Analysis

• 7 training experiments

• Divided into 4 different training
setups

• Every training setup keeps some
variables constant and changes
others

Training Setups and Experiments

Training Setup 2 (TS2)

1. Training setup 2 experiment 1 (TS2AC2Exp1): SAC and PPO training with AC-2 architecture against

agent using MinMax searching algorithm with depth 1

2. Training setup 2 experiment 2 (TS2AC2Exp2): SAC and PPO training with AC-2 architecture against

MinMax searching algorithm with depth 2

Reward Structure 1 (R1)

C
u

m
u

la
ti

v
e

re
w

ar
d

s

Move count

Results Experiment TS2AC2Exp1

• High win rate against
• MinMax with search depth 1

• SAC converges in fewer
steps than PPO

C
u

m
u

la
ti

v
e

re
w

ar
d

s

Move count

D
ra

w
 p

ro
b

ab
il

it
y

Move count

Results Experiment TS2AC2Exp2

• Increasing draw rate with

• Increasing cumulative reward

• Poor performance against
MinMax with search depth 2

• Agents training against MinMax with search depth 2
1. Produced very defensive agents

2. The agents optimize for high draw probability instead of win probability.

TS2 Conclusion

Training Setup 3 (TS3)

1. Training setup 3 experiment 1 (TS3AC2Exp1): Training agents using intermediate goal states with 4

parallel learning environments and self-play

2. Training setup 3 experiment 2 (TS3AC2Exp1): Training agents using intermediate goal states with 8

parallel learning environments and self-play

Reward Structure 2 Intermediate Goal States (R2)

C
u

m
u

la
ti

v
e

R
ew

ar
d

Move count

D
ra

w
 p

ro
b

ab
il

it
y

Move count

W
in

 P
ro

b
ab

il
it

y
 R

L

Move count

Results Experiment TS3AC2Exp1

• Positive cumulative rewards

• Decreasing draw rate in
self-play

• 90% win rate against
MinMax search depth 2

W
in

 P
ro

b
ab

il
it

y
 R

L

Move count

P
la

ye
r

2
 (

R
ed

)
w

in
 p

ro
b
ab

il
it

y

Move count

D
ra

w
 P

ro
b
ab

il
it

y

Move count

Results Experiment TS3AC2Exp2

• Lower draw rates in self-play

• Higher win rates per agent in
self-play

• 100% win rate against
MinMax search depth 2

• Self-play is a viable training method when more that one learning
environment is deployed parallelly

• RL algorithms train faster and better with increasing parallel learning
environments

• Intermediate goal state reward system is effective in breaking RL agents
out of local optima

TS3 Conclusion

Training Setup 4

1. Training setup 4 experiment 1 (TS1AC2Exp1): Training agents with Curiosity rewards with 4 parallel

workers and self-play

Reward Structure 3 Curiosity (R3)

W
in

 P
ro

b
ab

il
it

y
 R

L

Move count

Checkmate

Results of Experiment TS4AC2Exp1

• Highly unstable

• Checkmate state discovered

• Curiosity reward generation system was highly
unstable in the Shologuti environment, but it is very
good at finding rare states

• It found a gap in the rules for Shologuti board game
• It discovered a checkmate state that

• The official rules do not account for checkmate states.

TS4 Conclusion

• Created a reinforcement learning testbench/environment for Shologuti
board game

• Found an effective reward system using Intermediate Goal States

• Created a Shologuti game that runs on the Web and Windows

• Developed and trained RL Agents using state of the art RL algorithms SAC
and PPO

• Created a python wrapper to access the Shologuti environment using
external scripts

Conclusion

https://saminbinkarim.itch.io/sholo-guti-project

Future Work

• Add more games like Shologuti to the library

• Write a detailed technical documentation of the Unity project to enable
future extensions.

• Streamline the installation of dependencies needed for running Shologuti
environment

• Benchmark trained RL Agents against humans

• Implement and benchmark more state of the art algorithms like Alpha-
Zero in the Shologuti environment

• Use GNNs to build custom RL algorithm

• Investigate and improve Intermediate Goal State reward system

