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Shologuti – A traditional board game

• A local board game popular 
in rural Bangladesh and India

• Part of a family of games 
including checkers 

• That are all derived from Al-
Quirkat

Shologuti – Bangladesh/ India



Adugo Jaguar and Dogs – Brazil

Fanorona-Madagascar

War Enclosure - Sri Lanka

Al-Quirkat – Spain/Middle East

Tiger Game - Chile

History of Shologuti



• Each player starts with 16 guti

• Players make move in alternate 
turns

• Must chose one legal move
• Can move to occupy adjacent empty 

space 

• Or jump over enemy guti to capture

• Multi capture moves are possible

• Must capture all 16 enemy guti to 
win

Shologuti Game Rules



Multi-capture move



Branching Complexity = 14 
(empirical estimate from simulator)

Shologuti board game as an AI research environment



• Ludo – Highest amount of research 
done

• Carrom – Simulator for research 
available (IIT Bombay)

• Shologuti – Neglected with little 
prior research
• Only one paper that implements 

MinMax tree searching algorithm for 
Shologuti

Research in local games popular in Bangladesh



• Arcade Learning environment, ALE

• Open AI gym 

• RLCard

• OpenSpiel

Simulation environments for RL

OPEN AI GYM OpenSpiel

ALE



• Temporal Difference (TD) Gammon –
1992

• AlphaGo - 2016

• Proximal Policy Optimization – 2017

• Soft Actor Critic - 2019

• Alpha Zero – 2017

• MuZero - 2019

State of the art RL algorithms



• Lack of research done for local games

• Poor availability of information for Shologuti

• Lack of availability of research environment for local games like 
Shologuti

• Popularity of environments like Open AI Gym

Motivation



• Python accessible learning environment 
• for training/benchmarking RL Agents

• Playable user-friendly Shologuti game 
• Running on web and windows

• Benchmark state of the art RL algorithms in Shologuti environment

Objectives



• Learning Game Development with Unity game engine

• Struggle with Unity ML-Agents toolkit

• Learning Reinforcement learning and AI Agents

• Learning and applying basics of Software engineering 

Challenges faced



• A playable Shologuti game for web and windows

• A research/learning environment for Shologuti

• Trained RL Agents capable of playing Shologuti

• Benchmarks of state of the art RL algorithms

• A Novel reward system Intermediate Goal States

Contributions

Python 
Agent

https://saminbinkarim.itch.io/sholo-guti-project


• ML-Agents toolkit makes drastic changes in updates

• Future iterations of Unity ML-Agents may not support the Shologuti 
environment

• Extending features of the environment requires C# and Unity knowledge

• Installing our python learning environment is not streamlined

Limitations



System Design and Implementation



Shologuti Game Features

• User-friendly HUD

• GUI Interface

• Custom art and animation

• Game modes
• Player vs Player 

• Player vs AI 

• AI vs AI



GUI Settings Menu

• Settings that can be controlled 
using the GUI Interface



System Overview



Game theoretic organization of Shologuti game

Game Tree Board States



Making a Move



• Board setup

• Move generation/execution

• Rule checking

• Scoring system

• Multiple types of board game AI

Core Game System Implementation



• MinMax AI opponents with adjustable search depth

• RL-Agents capable of training with self-play

• Custom sensor actuator system

• Environment can train using Unity ML-Agents python training script

• Environment can be controlled through external python script

RL Component Features



MinMax Search Based Agents



• TD Agent
• Temporal Difference (TD)

• Actor Critic Agents
• Proximal Policy Optimization, PPO

• Soft-Actor Critic,  SAC

Types of RL Agents



Observation Representation for Neural Networks



Temporal Difference (TD) Agent Decision/Inference



Actor Critic (AC) Agent Decision/Inference 



Temporal Difference (TD) Neural Network Architecture



Actor Critic 1 Neural Network Architecture



Actor Critic 2 Neural Network Architecture



Agent Training with Unity ML-Agents Trainer



Agent Training with Custom RL Algorithms



State and Action Mirroring



Generalized RL Algorithm



Settings for RL Component

• The type of enemy to train 
against

• Difficulty of the type of enemy 
selected

• Stepping mode toggle

• Animation toggle

• Autoplay toggle



Stepping Mode



Connecting to Environment with Python

• Video or live demo



Using Unity ML-Agents Trainer to Train Agents

• Video or live demo



Results and Analysis



• 7 training experiments

• Divided into 4 different training 
setups

• Every training setup keeps some 
variables constant and changes 
others

Training Setups and Experiments



Training Setup 2 (TS2)

1. Training setup 2 experiment 1 (TS2AC2Exp1): SAC and PPO training with AC-2 architecture against 

agent using MinMax searching algorithm with depth 1

2. Training setup 2 experiment 2 (TS2AC2Exp2): SAC and PPO training with AC-2 architecture against 

MinMax searching algorithm with depth 2



Reward Structure 1 (R1)
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Results Experiment TS2AC2Exp1

• High win rate against
• MinMax with search depth 1

• SAC converges in fewer 
steps than PPO
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Results Experiment TS2AC2Exp2

• Increasing draw rate with 

• Increasing cumulative reward

• Poor performance against 
MinMax with search depth 2



• Agents training against MinMax with search depth 2
1. Produced very defensive agents

2. The agents optimize for high draw probability instead of win probability.

TS2 Conclusion



Training Setup 3 (TS3)

1. Training setup 3 experiment 1 (TS3AC2Exp1): Training agents using intermediate goal states with 4 

parallel learning environments and self-play

2. Training setup 3 experiment 2 (TS3AC2Exp1): Training agents using intermediate goal states with 8 

parallel learning environments and self-play



Reward Structure 2 Intermediate Goal States (R2)
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Results Experiment TS3AC2Exp1

• Positive cumulative rewards

• Decreasing draw rate in 
self-play

• 90% win rate against 
MinMax search depth 2
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Results Experiment TS3AC2Exp2

• Lower draw rates in self-play

• Higher win rates per agent in 
self-play

• 100% win rate against 
MinMax search depth 2



• Self-play is a viable training method when more that one learning 
environment is deployed parallelly

• RL algorithms train faster and better with increasing parallel learning 
environments

• Intermediate goal state reward system is effective in breaking RL agents 
out of local optima

TS3 Conclusion



Training Setup 4

1. Training setup 4 experiment 1 (TS1AC2Exp1): Training agents with Curiosity rewards with 4 parallel 

workers and self-play



Reward Structure 3 Curiosity (R3)
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Checkmate

Results of Experiment TS4AC2Exp1

• Highly unstable 

• Checkmate state discovered



• Curiosity reward generation system was highly 
unstable in the Shologuti environment, but it is very 
good at finding rare states

• It found a gap in the rules for Shologuti board game
• It discovered a checkmate state that 

• The official rules do not account for checkmate states. 

TS4 Conclusion



• Created a reinforcement learning testbench/environment for Shologuti 
board game

• Found an effective reward system using Intermediate Goal States

• Created a Shologuti game that runs on the Web and Windows

• Developed and trained RL Agents using state of the art RL algorithms SAC 
and PPO

• Created a python wrapper to access the Shologuti environment using 
external scripts

Conclusion

https://saminbinkarim.itch.io/sholo-guti-project


Future Work

• Add more games like Shologuti to the library

• Write a detailed technical documentation of the Unity project to enable 
future extensions.

• Streamline the installation of dependencies needed for running Shologuti 
environment

• Benchmark trained RL Agents against humans

• Implement and benchmark more state of the art algorithms like Alpha-
Zero in the Shologuti environment

• Use GNNs to build custom RL algorithm

• Investigate and improve Intermediate Goal State reward system


