

Department of Computer Science & Engineering Independent University Bangladesh

Creating an Open-Al gym like environment for Bangladeshi game Shologuti using Unity 3D and ML-Agents

Samin Bin Karim ID: 1720049

Supervised by Dr. Amin Ahsan Ali

Outline of Presentation

- Introduction
 - Brief background of Shologuti
 - Shologuti as a research environment
 - Motivation for project
 - Objectives and Challenges
- Design and Implementation
- Results and Analysis
- Conclusion and Future work

Shologuti – A traditional board game

Shologuti – Bangladesh/ India

- A local board game popular in rural Bangladesh and India
- Part of a family of games including checkers
- That are all derived from Al-Quirkat

History of Shologuti

War Enclosure - Sri Lanka

Adugo Jaguar and Dogs - Brazil

Shologuti Game Rules

- Each player starts with 16 guti
- Players make move in alternate turns
- Must chose one legal move
 - Can move to occupy adjacent empty space
 - Or jump over enemy guti to capture
- Multi capture moves are possible
- Must capture all 16 enemy guti to win

Multi-capture move

Shologuti board game as an AI research environment

- $x_1 = number of gut is owned by player 1$
- $x_2 =$ number of gutis owned by player 2

 $x_3 =$ number of empty spaces on the board

 $x_3 = board_size - x_1 - x_2$

board_size = 37

 $\log_{10}(\text{Statespacecomplexity}) = \log_{10} \sum_{x_{1}=0}^{16} \sum_{x_{2}=0}^{16} \frac{37!}{x_{1}! x_{2}! x_{3}!} = 17.58$

 \log_{10} (State space complexity) ≈ 18

Branching Complexity = 14 (*empirical estimate from simulator*)

Research in local games popular in Bangladesh

- Ludo Highest amount of research done
- **Carrom** Simulator for research available (IIT Bombay)
- Shologuti Neglected with little prior research
 - Only one paper that implements MinMax tree searching algorithm for Shologuti

Simulation environments for RL

- Arcade Learning environment, ALE
- Open Al gym
- RLCard
- OpenSpiel

State of the art RL algorithms

- Temporal Difference (TD) Gammon 1992
- AlphaGo 2016
- Proximal Policy Optimization 2017
- Soft Actor Critic 2019
- Alpha Zero 2017
- MuZero 2019

Motivation

- Lack of research done for local games
- Poor availability of information for Shologuti
- Lack of availability of research environment for local games like Shologuti
- Popularity of environments like Open AI Gym

Objectives

- Python accessible learning environment
 - for training/benchmarking RL Agents
- Playable user-friendly Shologuti game
 - Running on web and windows
- Benchmark state of the art RL algorithms in Shologuti environment

Challenges faced

- Learning Game Development with Unity game engine
- Struggle with Unity ML-Agents toolkit
- Learning Reinforcement learning and AI Agents
- Learning and applying basics of Software engineering

Contributions

- A playable <u>Shologuti game</u> for web and windows
- A research/learning environment for Shologuti
- Trained RL Agents capable of playing Shologuti
- Benchmarks of state of the art RL algorithms
- A Novel reward system Intermediate Goal States

Limitations

- ML-Agents toolkit makes drastic changes in updates
- Future iterations of Unity ML-Agents may not support the Shologuti environment
- Extending features of the environment requires C# and Unity knowledge
- Installing our python learning environment is not streamlined

System Design and Implementation

Shologuti Game Features

- User-friendly HUD
- GUI Interface
- Custom art and animation
- Game modes
 - Player vs Player
 - Player vs Al
 - Al vs Al

GUI Settings Menu

• Settings that can be controlled using the GUI Interface

System Overview

Game theoretic organization of Shologuti game

Game Tree

Board States

Making a Move

Core Game System Implementation

- Board setup
- Move generation/execution
- Rule checking
- Scoring system
- Multiple types of board game AI

Shologuti Board Doubly Connected

- MinMax AI opponents with adjustable search depth
- RL-Agents capable of training with self-play
- Custom sensor actuator system
- Environment can train using Unity ML-Agents python training script
- Environment can be controlled through external python script

MinMax Search Based Agents

Types of RL Agents

- TD Agent
 - Temporal Difference (TD)
- Actor Critic Agents
 - Proximal Policy Optimization, PPO
 - Soft-Actor Critic, SAC

Observation Representation for Neural Networks

Table 4.1 Initial board state observation

Temporal Difference (TD) Agent Decision/Inference

Actor Critic (AC) Agent Decision/Inference

Temporal Difference (TD) Neural Network Architecture

Actor Critic 1 Neural Network Architecture

Actor Critic 2 Neural Network Architecture

Agent Training with Unity ML-Agents Trainer

Agent Training with Custom RL Algorithms

State and Action Mirroring

Generalized RL Algorithm

Settings for RL Component

Settings				
Red Player Type	RLAgent~	Green Player Type	RLAgent∕	
Red Difficulty	Easy ~	Green Difficulty	Easy ~	
Red Agent Type	Expr ~	Green Agent Type	Expr ~	
Stepping Animation	OFF OFF	Autoplay	ON ON	
Save & Reset			Back	
Red Ag	jent Type	Expr ~ PPO SAC		
	Stepping	Expr		

- The type of enemy to train against
- Difficulty of the type of enemy selected
- Stepping mode toggle
- Animation toggle
- Autoplay toggle

Stepping Mode

Connecting to Environment with Python

• Video or live demo

Using Unity ML-Agents Trainer to Train Agents

• Video or live demo

Results and Analysis

Training Setups and Experiments

- 7 training experiments
- Divided into 4 different training setups
- Every training setup keeps some variables constant and changes others

Training Setup 2 (TS2)

Experiment	NN anabitaatuma	Training method	Reward	Number of parallel
name	NN architecture	1 raining method	structure	learning environments
TS2AC2Exp1	AC-2	Vs MinMax, search depth 1	R1	1
TS2AC2Exp2	AC-2	Vs MinMax, search depth 2	R1	1
· ·				

Table 5.2 Training Setup 2

- Training setup 2 experiment 1 (TS2AC2Exp1): SAC and PPO training with AC-2 architecture against agent using MinMax searching algorithm with depth 1
- 2. Training setup 2 experiment 2 (TS2AC2Exp2): SAC and PPO training with AC-2 architecture against MinMax searching algorithm with depth 2

Reward / Penalty Condition	Reward	Ratio to maximum reward
Reward for wining a match	16	1
Reward per enemy guti captured from enemy	I	1/16 th
Reward for drawing a match	0	0
Penalty for losing a match	-16	-1
Penalty per guti lost to enemy	-1	-1/16 th
Penalty per legal move	-0.2	1/80 th
Penalty per illegal move	-16	-1

Table 5.5 Reward Policy R1

Results Experiment TS2AC2Exp1

- High win rate against
 - MinMax with search depth 1
- SAC converges in fewer steps than PPO

Results Experiment TS2AC2Exp2

- Increasing draw rate with
- Increasing cumulative reward
- Poor performance against MinMax with search depth 2

TS2 Conclusion

- Agents training against MinMax with search depth 2
 - 1. Produced very defensive agents
 - 2. The agents optimize for high draw probability instead of win probability.

Training Setup 3 (TS3)

Experiment	NN architecture	Turining mothed	Reward	Number of parallel
name	inin architecture	i raining method	structure	learning environments
TS3AC2Exp1	AC-2	Self-play	R2	4
TS3AC2Exp2	AC-2	Self-play	R2	8

Table 5.3 Training Setup 3

- Training setup 3 experiment 1 (TS3AC2Exp1): Training agents using intermediate goal states with 4
 parallel learning environments and self-play
- 2. Training setup 3 experiment 2 (TS3AC2Exp1): Training agents using intermediate goal states with 8 parallel learning environments and self-play

Reward Structure 2 Intermediate Goal States (R2)

Reward / Penalty Condition	Reward	Ratio to maximum
		reward
Reward for wining a match after capturing 16 enemy guti	1	1
Reward for wining a match by stalling the game after reaching a higher score than enemy till move limit is reached.	0.125	1/8th
Reward per enemy guti captured from enemy	0.0625	1/16 th
Reward for reaching intermediate goal states	0.0625	1/16 th
Reward for drawing a match	0	0
Penalty for losing a match	-1	-1
Penalty per guti lost to enemy	-0.0625	-1/16 th
Penalty per legal move	-0.02	-1/50 th
Penalty per illegal move	-1	-1

Table 5.6 Reward Policy R2 with Intermediate goal states

Results Experiment TS3AC2Exp1

- Positive cumulative rewards
- Decreasing draw rate in self-play
- 90% win rate against MinMax search depth 2

Results Experiment TS3AC2Exp2

- Lower draw rates in self-play
- Higher win rates per agent in self-play
- 100% win rate against MinMax search depth 2

TS3 Conclusion

- Self-play is a viable training method when more that one learning environment is deployed parallelly
- RL algorithms train faster and better with increasing parallel learning environments
- Intermediate goal state reward system is effective in breaking RL agents out of local optima

Experiment	NN architecture	Training method	Reward structure	Number of parallel learning environments
TS4AC2Exp1	AC-2	Self-play	R3	4

Table 5.4 Training Setup 4

 Training setup 4 experiment 1 (TS1AC2Exp1): Training agents with Curiosity rewards with 4 parallel workers and self-play

Reward Structure 3 Curiosity (R3)

Reward / Penalty Condition	Reward	Ratio to maximum	
		reward	
Reward for wining a match after capturing 16 enemy guti	1	1	
Reward for wining a match by stalling the game after reaching	0.125	1/8th	
a higher score than enemy till move limit is reached.			
Reward per enemy guti captured from enemy	0.0625	1/16 th	
Reward generated by curiosity module	Range (0 to 2)	0 to 2	
Reward for drawing a match	0	0	
Penalty for losing a match	-1	-1	
Penalty per guti lost to enemy	-0.0625	-1/16 th	
Penalty per legal move	-0.002	-1/50 th	
Penalty per illegal move	-1	-1	

Table 5.7 Reward Policy R3 with Curiosity rewards

Results of Experiment TS4AC2Exp1

PlayerMinMax Type: MinMaxAL Depth: 2 Color: RedGut Score: 10 Victories: 3663

- Highly unstable
- Checkmate state discovered

Checkmate

TS4 Conclusion

- Curiosity reward generation system was highly unstable in the Shologuti environment, but it is very good at finding rare states
- It found a gap in the rules for Shologuti board game
 - It discovered a checkmate state that
 - The official rules do not account for checkmate states.

Conclusion

- Created a reinforcement learning testbench/environment for Shologuti board game
- Found an effective reward system using Intermediate Goal States
- Created a Shologuti game that runs on the <u>Web</u> and Windows
- Developed and trained RL Agents using state of the art RL algorithms SAC and PPO
- Created a python wrapper to access the Shologuti environment using external scripts

Future Work

- Add more games like Shologuti to the library
- Write a detailed technical documentation of the Unity project to enable future extensions.
- Streamline the installation of dependencies needed for running Shologuti environment
- Benchmark trained RL Agents against humans
- Implement and benchmark more state of the art algorithms like Alpha-Zero in the Shologuti environment
- Use GNNs to build custom RL algorithm
- Investigate and improve Intermediate Goal State reward system