g Department of Computer Science & Engineering
2/, Independent University Bangladesh

Creating an Open-Al gym like environment for
Bangladeshi game Shologuti using Unity 3D and ML-
Agents

Samin Bin Karim
ID: 1720049

Supervised by
Dr. Amin Ahsan Ali

Outline of Presentation

* Introduction
* Brief background of Shologuti
* Shologuti as a research environment
* Motivation for project
* Objectives and Challenges

* Design and Implementation
* Results and Analysis
* Conclusion and Future work

Shologuti — A traditional board game

Shologuti — Bangladesh/ India

* A local board game popular
in rural Bangladesh and India

* Part of a family of games
including checkers

e That are all derived from Al-
Quirkat

History of Shologuti

Al-Quirkat — Spain/Middle East

Shologuti Game Rules

* Each player starts with 16 guti

* Players make move in alternate
turns

* Must chose one legal move

e Can move to occupy adjacent empty
space

* Or jump over enemy guti to capture
e Multi capture moves are possible

* Must capture all 16 enemy guti to
win

Multi-capture move

Green Player's Turn Green Player's Turn Red Player's Turn

Shologuti board game as an Al research environment

x1 = number of gutis owned by player 1
X, = number of gutis owned by player 2
x3 = number of empty spaces on the board
x3 = board_size — x; — x,
board size = 37

16 37!

16
log,,(Statespacecomplexity) = lﬂglﬂz Z ' ;= 17.58

X1=o0 xz:ﬂxlle!x:g.

log,, (State space complexity) = 18

Branching Complexity = 14

(empirical estimate from simulator)

Research in local games popular in Bangladesh

o=

home square

* Ludo — Highest amount of research
done

e Carrom — Simulator for research
available (IIT Bombay)

* Shologuti — Neglected with little
prior research
* Only one paper that implements

MinMax tree searching algorithm for
Shologuti

Simulation environments for RL

'Q:‘:‘s’ z ® . Arcade Learning environment, ALE
}I}RL o , * Open Algym

R D;'Hi.,lz e RLCard

e OpenSpiel

(&)

OPEN Al GYM W o penspiel

State of the art RL algorithms

| (* Temporal Difference (TD) Gammon —
| 1992

* AlphaGo - 2016

* Proximal Policy Optimization — 2017
* Soft Actor Critic - 2019

* Alpha Zero — 2017

* MuZero - 2019

Motivation

* Lack of research done for local games
* Poor availability of information for Shologuti

* Lack of availability of research environment for local games like
Shologuti

e Popularity of environments like Open Al Gym

Objectives

* Python accessible learning environment
e for training/benchmarking RL Agents

* Playable user-friendly Shologuti game
* Running on web and windows

 Benchmark state of the art RL algorithms in Shologuti environment

Challenges faced

* Learning Game Development with Unity game engine
 Struggle with Unity ML-Agents toolkit

* Learning Reinforcement learning and Al Agents

* Learning and applying basics of Software engineering

ML-Agents —>»| Environment
l .o : action Reward| |state
B : - a; R; S;
Agent <‘

Contributions

* A playable Shologuti game for web and windows

* A research/learning environment for Shologuti

* Trained RL Agents capable of playing Shologuti
* Benchmarks of state of the art RL algorithms
* A Novel reward system Intermediate Goal States

Green Player's Turn

action
d¢

R¢
Python
Agent

https://saminbinkarim.itch.io/sholo-guti-project

Limitations

* ML-Agents toolkit makes drastic changes in updates

* Future iterations of Unity ML-Agents may not support the Shologuti
environment

* Extending features of the environment requires C# and Unity knowledge
* Installing our python learning environment is not streamlined

System Design and Implementation

Shologuti Game Features

e User-friendly HUD
e GUI Interface
e Custom art and animation

* Game modes
* Player vs Player
* Player vs Al
* Alvs Al

GUI Settings Menu

Settings * Settings that can be controlled
using the GUI Interface

Red Player Type Green Player Type
Red Difficulty Green Difficulty

Red Agent Type Green Agent Type

Stepping OFF Autoplay @ ON

Animation @ ON

Save & Reset

System Overview

Settings
Green Player's Turn
InputHandler — UlManager —— GameManager —— Rule Checker
Player Game State Board Manager
MinMaxAl RLAgent Human Main Board nghMelght Board
Simulator

Sensor Actuator Reward
System System

Python Baracuda
Environment NN

Game theoretic organization of Shologuti game

Game Tree Board States

Player Move Request
Received

Get Player Type

Perform Action

i

Yes

Has Received Action ?

Y

Wait for Action

Request Action from
Python Environment
or Baracuda NN

Send Observation to
Python Environment
or Baracuda NN

A 4

Player Type

Player Type Is Human

Player Type Is
MinMax Al

Player Type Is

l€«——Yes—<_ Reinforcement Learning

Agent

Move

Has Received Action ? Yes—p Perform Action

No
End
Wait For Human Input
A A
Yes— |
—Yes—»Calculate Next Action » Perform Action
—No—>| Throw Error

Making a Move

Red Player's Turn

Core Game System Implementation

* Board setup

* Move generation/execution

* Rule checking

* Scoring system

* Multiple types of board game Al

List of Connected Nodes

Shologuti Board Doubly Connected
Graph

Green Player's Turn

RL Component Features

* MinMax Al opponents with adjustable search depth

* RL-Agents capable of training with self-play

* Custom sensor actuator system

* Environment can train using Unity ML-Agents python training script
* Environment can be controlled through external python script

MinMax Search Based Agents

Red Player's Turn

Minimize Maximize
Node Node N/

Types of RL Agents

* TD Agent
* Temporal Difference (TD)

* Actor Critic Agents

* Proximal Policy Optimization, PPO
* Soft-Actor Critic, SAC

Observation Representation for Neural Networks

1 1 1 1 1 1 1 1 1 1
ik 1 1 ik 1 1 0 0 0)
0 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2
Figure ¢ Inttial board state

Temporal Difference (TD) Agent Decision/Inference

Shologuti game environment

)

Red Player's Turn

Sensor Actuator

T Max

Valued

/ : \ State

L

Future State | | Future State
Observation Observation

Future State Values/Utilities

l !

Python environment / Baracuda NN model

Actor Critic (AC) Agent Decision/Inference

Shologuti game environment

)

Red Player's Turn

=
Sensor Actuator
Action with Max
Probability
;’/
! £ T AN
Current State)
Observation Partial lllegal Action Filter

i

Action Probabilities
A

Python environment / Baracuda NN model

Temporal Difference (TD) Neural Network Architecture

37 length 1 length
Discrete vector
Vector
Observations
0to 2 : Neural 0.0 to

Network 16.0 State Value

Actor Critic 1 Neural Network Architecture

37 length
Discrete
Vector

74 length
Action

Probability
Vector

Observations

Oto2

Neural
Network

Action
Filter

00to1.0 T

Action Mask

2 length
Discrete
Vector

outputs

—— (0to 36 Selected Node

—— 0to 36 Target Node

Actor Critic 2 Neural Network Architecture

37 length
Discrete
Vector

Observations

24 length
Action
Probability

Vector

0to 2

Neural
Network

Action
Filter

A
00to1.0

Action Mask

2 length
Discrete
Vector

outputs

L 0to 15 Selected

Guti

Move to
Oto7 take

Agent Training with Unity ML-Agents Trainer

Reinforcement
Learning Algorithm MNeural Networks
Implementations

1 T
v

ML-Agents Python

Scripts
4
Trained Neural Netwaorks (<€ Unity ML-Agents Python Trainer)
Trainer
Checkpoints

4

" Actions

Baracuda T l
" Rewards /

Observations

Neural Network Model)
Runnable in Unity game Sensor/Actuator system
engine A
Agent A Agent B

¥ v

Environment

Agent Training with Custom RL Algorithms

Reinforcement
Learning Algorithm Neural Networks
Implementations

1 f
!

Custom Python

Scripts
A
Trained Neural Networks |« Custom Python Trainer
Actions

Rewards /
Observations

Sensor/Actuator system

F

Agent A Agent B

v v

Environment

State and Action Mirroring

Player 1/ Player 2 - State Observation Player 1/ Player 2 - Actions

Y
o Actuator Mirroring
Sensor Mirroring Module
Module
A
h 4

Player 1 - State Observation Player 1 - Actions

NN
NN

24 length

Action
37 length n
Discrete Pr\(;bablllty
Vector ‘ector
Observations
0to2 : Neural A(?,tion
. Network Filter
N
0.0t0o 1.0
Action Mask

2 length
Discrete
Vector

outputs

— Oto15

— O0to7

Red Player's Turn

Selected
Guti

Move to
take

Generalized RL Algorithm

State Null? L= Observation

A

¢—NO

Feed Observation to
NN and Get Action

Send Action to Game
Environment

l

Wait for Reward and
Next State

Y

Environment
Closing?

YES

Has Received
Reward and Next

NO
State ? L
Yes Set Current State to
Null
Store Current State, T
Next State , Current Set Next State to
Experience Action and Reward Null
Buffer As Experience Tuple Y
Buffer Experience
Length Buffer
Has enough LS
Experience?
NO
YES
Experience
Batch X .
Sample Experience Train Training
Batch 4 Epochs left?

YES.

Settings for RL Component

Settings * The type of enemy to train
against

Red Player Type Green Player Type

e Difficulty of the type of enemy
selected

Red Difficulty Green Difficulty

Red Agent Type Green Agent Type

 Stepping mode toggle
Stepping Autoplay) i AnimatiOn toggle
Animation ° Autoplay toggle

Red Agent Type

Stepping W UN

Stepping Mode

PlayerRLA Gl'een Player's Turn
Type: RLAgent

Detail:Experimental

Color: RedGuti

Settings

Score: 0
Victories: 0

Red Player Type Green Player Type
Red Difficulty

Red Agent Type

Stepping Autoplay

Animation

Connecting to Environment with Python

e VVideo or |

NNPyTorch

. 1
2
3

' 4
5
6
i
8
9

[S
W N R e

PC| File Edit

[

ive demo

Navigate

from typing import List
import torch

import SholoGutiUnityWrapper
from experience import Buffer
from model import NN

experiences: Buffer [1]

cumulative_rewards: List[float]

NUM_TRAINING_STEPS
NUM_NEW_EXP 1000

BUFFER_SIZE 10000

def main()
env SholoGutiUnityWrapper.SholoGutiUnityWrapper(

print("Environment Created")

'C:/Users/samin/OneDrive/Desktop/SholoGutiWindowsBuild/KamlaGut

Using Unity ML-Agents Trainer to Train Agents

e \Video or live demo

Red Player Type
Red Difficulty

Red Agent Type

Stepping

Animation

Save & Reset

n ount ¥
© Inspector = Hierarchy i W Project
@ i i ettin +: +~ a TR

{} < Game i @@ Assets

@ Main Camera @@ Brains
@ Training Area

Maximize On Play Mute Aud

Settings

Green Player Type
Green Difficulty

Green Agent Type

Autoplay

Asset Labels
E Console
Clear v Collapse Errc
4 (08:47:31] Null
& PLGutiAgent.CreateM

Scriptabl

20licC
B RuleBook

Results and Analysis

Training Setups and Experiments

AC- AC-2 1 4 ° * 7 training experiments
1 1 LT T «Divided into 4 different training
| amber of parale setups
 Arenectures roeriment s * Every training setup keeps some
Variables variables constant and changes
Training methods Reward Structures others

| | Voo

Vs
Self-play MinMax enemy R1 R2 R3

|
v v

Search Search
depth 1 depth 2

Training Setup 2 (TS2)

Experiment . Reward Number of parallel
NN architecture Training method _ _
name structure learning environments
TS2AC2Exp1 AC-2 Vs MinMax, search depth 1 R1 1
TS2AC2Exp2 AC-2 Vs MinMax, search depth 2 R1 1

Table 5.2 Training Setup 2

1. Training setup 2 experiment 1 (TS2AC2Exp1): SAC and PPO training with AC-2 architecture against

agent using MinMax searching algorithm with depth 1

2. Training setup 2 experiment 2 (TS2AC2Exp2): SAC and PPO training with AC-2 architecture against

MinMax searching algorithm with depth 2

Reward Structure 1 (R1)

Reward / Penalty Condition Reward Ratio to maximum reward
Reward for wining a match 16 1
Reward per enemy guti captured from enemy 1 1/16th
Reward for drawing a match 0 0
Penalty for losing a match -16 -1
Penalty per guti lost to enemy -1 -1/16th
Penalty per legal move -0.2 1/80th
Penalty per illegal move -16 -1

Table 5.5 Reward Policy R1

Results Experiment TS2AC2Exp1

——————""7" * Hjgh win rate against
* MinMax with search depth 1

e SAC converges in fewer
nw steps than PPO

rewards

Cumulative

Results Experiment TS2AC2Exp?2

* Increasing draw rate with
* Increasing cumulative reward

wards

Cumulative re
E a2 & &

* Poor performance against
MinMax with search depth 2

Draw probability

Stepping/Paused

TS2 Conclusion

* Agents training against MinMax with search depth 2

1. Produced very defensive agents
2. The agents optimize for high draw probability instead of win probability.

Draw probability
Win probability MinMax

400k
Move count

‘Win Probability RL

Training Setup 3 (TS3)

Experiment _ Reward Number of parallel
NN architecture Training method _ _
name structure learning environments
TS3AC2Exp1 AC-2 Self-play Rz 4
TS3AC2Exp2 AC-2 Self-play Rz 8

Table 5.3 Training Setup 3

1. Training setup 3 experiment 1 (TS3AC2Exp1): Training agents using intermediate goal states with 4

parallel learning environments and self-play

2. Training setup 3 experiment 2 (TSSAC2Exp1): Training agents using intermediate goal states with 8

parallel learning environments and self-play

Reward Structure 2 Intermediate Goal States (R2)

o Ratio to maximum
Reward / Penalty Condition Reward

reward
Reward for wining a match after capturing 16 enemy guti 1 1
Reward for wining a match by stalling the game after reaching

_ _ o 0.125 1/8th

a higher score than enemy till move limit is reached.
Reward per enemy guti captured from enemy 0.0625 1/16th
Reward for reaching intermediate goal states 0.0625 1/16%®
Reward for drawing a match 0 0
Penalty for losing a match -1 -1
Penalty per guti lost to enemy -0.0625 -1/16th
Penalty per legal move -0.02 -1/50th
Penalty per 1llegal move -1 -1

Table 5.6 Reward Polwy R2 with Intermediate goal states

Results Experiment TS3AC2Exp1l

. * Positive cumulative rewards
z
P e Decreasing draw rate in
E self-play
e w e« *90% win rate against

e . MinMax search depth 2
a

Mov t
.‘é

5 DK
Move count

Results Experiment TS3AC2Exp2

Draw Probability

Player 2 (Red) win probability

Win Probability RL

* Lower draw rates in self-play

* Higher win rates per agent in
self-play

s

* 100% win rate against
MinMax search depth 2

TS3 Conclusion

* Self-play is a viable training method when more that one learning
environment is deployed parallelly

* RL algorithms train faster and better with increasing parallel learning
environments

* Intermediate goal state reward system is effective in breaking RL agents
out of local optima

Training Setup 4

_ _ o Reward Number of parallel
Experiment NN architecture Training method _ _
structure learmng environments
TS4AC2Exp1 AC-2 Self-play R3 4

1.

Table 5.4 Training Setup 4

workers and self-play

Training setup 4 experiment 1 (TS1AC2Exp1): Training agents with Curiosity rewards with 4 parallel

Reward Structure 3 Curiosity (R3)

Ratio to maximum

Reward / Penalty Condition Reward

reward
Reward for wining a match after capturing 16 enemy guti 1 1
Reward for wining a match by stalling the game after reaching) -
a higher score than enemy till move limit 1s reached. O e
Reward per enemy guti captured from enemy 0.0625 1/16th
Reward generated by curiosity module Range (0 to 2) 0to2
Reward for drawing a match 0 0
Penalty for losing a match -1 -1
Penalty per guti lost to enemy -0.0625 -1/16th
Penalty per legal move -0.002 -1/50th
Penalty per illegal move -1 -1

Table 5.7 Reward Policy R3 with Curtosity rewards

Results of Experiment TS4AC2Exp1l

* Highly unstable
 Checkmate state discovered

Win Probability RL

Checkmate

TS4 Conclusion

* Curiosity reward generation system was highly
unstable in the Shologuti environment, but it is very
good at finding rare states

* |t found a gap in the rules for Shologuti board game
* |t discovered a checkmate state that
* The official rules do not account for checkmate states.

Conclusion

* Created a reinforcement learning testbench/environment for Shologuti
board game

* Found an effective reward system using Intermediate Goal States
* Created a Shologuti game that runs on the Web and Windows

* Developed and trained RL Agents using state of the art RL algorithms SAC
and PPO

* Created a python wrapper to access the Shologuti environment using
external scripts

https://saminbinkarim.itch.io/sholo-guti-project

Future Work

* Add more games like Shologuti to the library

* Write a detailed technical documentation of the Unity project to enable
future extensions.

e Streamline the installation of dependencies needed for running Shologuti
environment

 Benchmark trained RL Agents against humans

* Implement and benchmark more state of the art algorithms like Alpha-
Zero in the Shologuti environment

* Use GNNs to build custom RL algorithm
* Investigate and improve Intermediate Goal State reward system

