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Abstract  

Rehabilitation exercises play a very important part in a patient‘s postoperative 

recovery and treatment of many musculoskeletal conditions. Reports shows that over 90% 

of all rehabilitation exercise sessions are being performed in a home-based setting [2]. In 

hospitals, each of the patients is monitored by a trained physician. However, as the number 

of patient increases this process becomes costly and infeasible. An effective way to resolve 

this is to provide technological support for making home-based rehabilitation. The patient 

stays at home and performs the exercises before the camera and the video is then 

transmitted to the physician allowing them provide feedback on the exercises. More 

intelligent systems can automatically assess the exercises performed and can just notify the 

patient and physician how well the exercises are being performed. In this project, we 

propose two machine learning-based methods to assess the quality of exercises where the 

data is captured by such an intelligent system. More specifically, we evaluate the exercise 

data provided in the KInematic Assessment of MOvement and Clinical Scores for Remote 

Monitoring of Physical REhabilitation (KIMORE) dataset. The KIMORE dataset consists 

of skeleton data of 5 exercises from 78 patients. Skeleton data is the time series data of 

skeleton joint positions extracted from depth videos captured using Kinect, a motion-

sensing device. It also contains the physician's rating of the quality of the exercises. For the 

first baseline, we use the features provided with the KIMORE dataset, validated by 

physicians to train a long short-term memory (LSTM) network. The average root mean 

square error (RMSE) loss for the first baseline is 0.290. For the second baseline, we extract 

features from the KIMORE skeleton data using graph convolution network (GCN) where 

each node represents a body part or joint in the body and the edges represent the 

connection between the body parts, which is used to train a LSTM network similar to the 

first baseline. The average RMSE loss for the second baseline is 0.191. We conclude that 

LSTM is more accurate at predicting the results when GCN features are used. One 

limitation of the project is that it evaluates only one dataset as this is the only publicly 

available dataset for which physician's assessments of the quality are provided. In the 

future, we would like to collect data from rehabilitation patients and apply our methods to 

that dataset. Another limitation is the lack of cheap consumer hardware which patients can 

easily have access to, as devices such as Kinect. 

Keywords — Movement modeling, deep learning, health monitoring, Graph 

Convolutional Network (GCN), Long Short term memory (LSTM) 
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1. Introduction 

Rehabilitation exercises are a key part of a patient‘s postoperative recovery and 

treatment of many musculoskeletal conditions. Currently, physicians observe patients 

perform specific tasks or exercises ranging from walking and sitting-to-standing to deep 

squats, etc., to evaluate and set objectives for their physical mobility. Nevertheless in the 

long run it is neither feasible nor economical for a physician to be present for every 

rehabilitation exercise session [1]. Therefore, the initial stages of the exercise are 

performed under the direct supervision of a physician in a rehabilitation facility while the 

second stages consist of prescribed exercises that the patient performs at their home 

setting. Reports indicate that over 90% of all rehabilitation exercise sessions are being 

done in a home-based setting [2]. Even though in these circumstances the patients are 

required to record and report their progress and intermittently visit the physicians for an 

assessment, multiple medical sources have reported that patients are unable to perform the 

exercises correctly [14], leading to extensions of the recovery period. The use of an 

automated system to evaluate and provide feedback on how well the exercise was done 

would reduce the hassle of periodically visiting the physician while also allowing the 

patients to fix their own mistakes as the system would evaluate the movement just as a 

physician. By automating the task of patient exercise assessment health service 

establishments can aim to reduce cost and improve home-based exercise to reduce the 

patient recovery period. 

 

The task of evaluating the quality of assessment of exercises falls under the category 

of quality of human movement assessment which in turn falls under the general category of 

human action recognition and action analysis. In recent years a large amount of research 

has been done to detect and classify human actions, for example, identifying standing-up, 

sitting down and walking motions from videos. Similar to action classification and 

detection, the quality of human movement assessment is also included under action 

analysis. However in exercise quality assessment we are interested in both recognizing the 

exercise and also analyzing it, thus this falls under action analysis.  

 

Recently work on quality of human movement assessment has gained attention 

resulting in various tools and devices to assist physical rehabilitation. For example, Sardari 

et al. [3] proposed a view-invariant method using a pre-trained convolutional neural 
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network (CNN) to evaluate the quality of human movement. Their model needs to be 

trained separately for each movement type but their performance drops when long-term 

occlusions occur. On the other hand, as exercises are events that are related to time series, 

LSTM has been proven useful by Liao et al. [4]. However, their model is validated by 

measuring variations in movement data without any ground truth assessment.  On the other 

hand, Sardari et al. [3] provide a ground truth using physician‘s evaluation. Their use of 

OpenPose, which is a real-time multiple-person detection library, fails to generate 

sufficient consistent heat maps resulting in lowered performance while also requiring 

heavy resources. Therefore, there is still a lack of robust, lightweight systems for automatic 

monitoring and assessment of patient‘s performance. 

 

1.1. Project Objective 

The primary objectives of this project are as follows: 

 

1. Propose a framework for assessment of rehabilitation exercises: 

Our primary goal is to propose two deep learning frameworks for the assessment of 

rehabilitation exercises. This will enable researchers to design systems that can either 

automatically provide feedback to the patients without requiring the involvement of a 

physician or provide summary feedback to the remotely located physician who can then 

provide feedback to the patient. 

 

2. Assessment of physician‘s prescribed features: 

First we propose a framework which uses handcrafted features defined by the 

physicians to propose a score based on the exercise. Next, we evaluate the features and 

their temporal relationship to estimate a score. The physicians evaluate the exercise mostly 

based on angles and distances between joints. 

 

3. Assessment of computationally generated features: 

Secondly, we move to generate the features automatically, using a GCN, to look into 

the possibility of bridging the gap of human assessment of these exercises. Next, we 

evaluate the features and their temporal relationship to estimate a score. 
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4. Provide the code for the repository to help further research on  human movement 

assessment: 

The vast majority of researchers are more familiar with a similar problem, human 

action classification. Within the same substrata, human action assessment lacks the 

favoritism of researchers and students, possibly due to the lack of work in the field, thus 

leading to no benchmark to base their work on. We hope to provide a reasonable 

benchmark to new researchers to indulge their interests in the topic and possibly improve 

the results by sharing our model and code for the repository. 

 

Further prospects of the project can be found in the ―future work‖ of the conclusion section 

 

1.2. Scope of the project  

The aim of the project includes establishing a framework for the assessment of physical 

rehabilitation exercises using the skeleton dataset, KInematic Assessment of MOvement 

and Clinical Scores for Remote Monitoring of Physical REhabilitation, KIMORE. The 

framework proposed is hoped to provide a model with an acceptable loss, to ease the 

process of physical rehabilitation. In the process of the study, we also looked at similar 

work, and how they have tried to tackle the problem. With the proposal of two 

frameworks, the study is also able to contrast the feature extraction processes. Therefore 

allowing area for research in whether physician‘s defined features is required for 

automated assessment of physical rehabilitation exercises. 

 

1.3. Contribution of the project  

The main contributions of the project are as follows: 

 

1. We provide a new framework for the assessment of rehabilitation exercises using 

physician‘s prescribed features: 

The primary goal of the report is to generate a solution to ease the Rehabilitation 

process of patients suffering from musculoskeletal conditions using a computer-aided 

framework to generate the required feedback, allowing the chances of faster recovery. The 

framework proposed reaches an RMSE test loss of 0.290. 
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2. We provide a new framework for the assessment of rehabilitation exercises using 

GCN Features: 

The ability to use automatically generated features using GCN reduces the need for a 

dataset with specific features. The proposed framework reaches an average RMSE test loss 

of 0.191. This will allow new researchers to assess their requirements for generating new 

datasets.  

 

3. Provide a contrast of automatically generated features and physician‘s features: 

The comparison between the two frameworks will allow estimating which framework 

is computationally cheaper and more plausible in real-world solutions.  

 

1.4. Roadmap 

This report contains six major parts. Firstly, we discuss the related work and the 

groundwork that led to the embodiment of this project. Secondly, we will shed light on the 

variety of approaches, algorithms that researchers have tried to achieve this or similar 

goals.  Next, we will discuss the availability of datasets and their differences to come up 

with the best dataset to help us train and validate our concept. Next, we will discuss the 

proposed method section, where the details of our framework will be put forth. Then in the 

experimentation section, we will discuss implementation and specification of the models 

and discuss the achieved results and the experimentation that led us to the conclusion. 

Finally, we discuss our conclusion and prospects of future work in the domain.  
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2. Literature Review 

Action analysis has recently picked up pace in the past few years, out of which most 

of the research in the area is either based on physical rehabilitation, skill assessment or 

sports analysis. Within this subfield of study, many researchers have worked on similar 

goals using non-skeleton-based methods, such as CNN, mainly for sports scoring, and then 

applied their work on physical rehabilitation [5].  

 

Out of the many movement assessment studies, the most similar to our subject is 

discussed in the following many of which are image or depth-image-based models. The 

image datasets traditionally consist of RGB data using a regular camera while depth-based 

datasets are often collected using sensors such as Kinect, a motion-sensing input device 

produced by Microsoft. The Kinect device incorporates RGB cameras, infrared projectors, 

and detectors that mapped depth through either structured light or time of 

flight calculations. Figure 1 shows sample frames from KIMORE dataset for different 

exercises. Using image-based models, recent research has produced promising results 

using CNN. For example, Crabbe et al. [6] suggested using a CNN network to map depth 

images onto a high-level pose within a manifold space. Next, they used the high-level 

poses information onto a statistical model, to evaluate the quality of movement for actions 

like walking on stairs.  

 

Figure 1: Sample frames from KIMORE for 5 exercises. [10] 

 

As motion analysis is dependent on the efficiency of the movement over a time 

period, some researchers however focus more on a temporal-based model. For example, 

Liao et al. [4], adapted a long short term memory (LSTM) based model, using 3D motion 

capture skeleton data to assess rehabilitation movement. Then they used a performance 

metric based on Gaussian mixture model log-likelihood to provide an estimation of the 

movement score. On the other hand, Elkholy et al. [7], used motion capture to calculate 

Spatio-temporal descriptors to assess the quality of movement for walking on stairs, stand-

up, sitting down and walking motions. They performed this by classifying each movement 
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sequence into a normal and abnormal class using a probabilistic normalcy model from their 

descriptors obtained from regular subjects. Next, they estimated a score by modeling the 

Spatio-temporal descriptors of movements into a linear regression. 

 

Similar to the above-mentioned studies, Sardari et al. [3] proposed a view-invariant 

method to assess the quality of human movement. They implemented an end-to-end CNN 

that is made up of two stages. Firstly, view-invariant trajectory descriptor for each body 

joint is collected from RGB images to form a collection of trajectories for all joints. They 

use this in an adaptive, pre-trained 2D CNN to establish spatial relationships among the 

different parts of the body and predict a score for the movement quality. They applied their 

model on their own generated dataset, a multi-view, non-skeleton, non-mocap, 

rehabilitation movement dataset (QMAR), and also in a Kinect based on the KIMORE 

dataset. Figure 2 illustrates the data capture mechanism for QMAR dataset, where they 

used multiple cameras to generate a multi viewed dataset. As the KIMORE dataset is not a 

multi-viewed dataset, the model was limited to using a single view at which they reached a 

rank correlation of 0.66. 

 

Figure 2: Typical camera views in the QMAR dataset with each one placed at a different 

height. [3] 

 

 Nor Rashid et al. [8], proposed a deep learning model, for skeleton-based physical 

rehabilitation exercise classification, by implementing a spike train feature on the UI-

PRMD dataset. A spike train is a sequence of recorded times at which a neuron fires an 
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action potential, i.e. a sudden, fast and propagating change. They performed a spike trained 

analysis by encoding the data into spike trains as spike train features are hugely rewarding 

towards deep learning because it can visually differentiate the physiotherapy movements 

based on the pattern differences. They parted the data into sections of 100 frames and used 

the section to generate spike trains. Then they used it in a CNN to classify the movement 

their proposed model achieved an accuracy of 0.77 on physical rehabilitation exercise 

classification.  

 

Liao et al. [4], proposed a deep learning framework for physical rehabilitation 

exercise assessment on a skeleton-based dataset. The proposed model is a deep Spatio-

temporal neural network that positions data in a temporal pyramid and utilizes the sub-

networks to process joint displacements of body parts to generate the spatial characteristics 

of human movements. Their main focus was on quantifying a movement performance by 

providing scoring for mapping the performance metrics onto an acceptable score of 

movement quality. Secondly, provide a deep Neural network model to generate movement 

quality scores using a supervised learning method. The proposed framework was applied 

on their own Skeleton-based physical rehabilitation dataset, UI-PRMD. Their performance 

metric is defined based on the log-likelihood of a Gaussian mixture model while encoding 

low-dimensional data representation obtained from their deep auto encoder network. They 

also employed distance functions, such as Euclidean, Mahalanobis distance, and dynamic 

time warping (DTW) for the performance metric. 
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3. Dataset 

There are many skeleton-based datasets widely used for human action recognition. When it 

comes to physical rehabilitation exercises, two datasets are the most prominent, University 

of Idaho - Physical Rehabilitation Movements Data Set (UI-PRMD) [9] consisting of only 

skeleton data and KInematic Assessment of MOvement and Clinical Scores for Remote 

Monitoring of Physical Rehabilitation (KIMORE) [10] dataset consisting of RGB depth 

video, along with skeleton joint position and orientations. But to our knowledge, no other 

datasets other than the KIMORE dataset have defined features and also physician‘s 

assessment or scoring. We provide the details of the dataset in the following. 

 

The KIMORE dataset provides a collection of different physical rehabilitation 

exercises collected using a RGB-D sensor, Kinect. The sensor was used to collect three 

different types of data input which are, RGB, depth videos, and skeleton joint positions. 

The data were collected for five different rehabilitation exercises, primarily specific for 

lower back pains which are prescribed by physicians. Along with the sensor data, this 

dataset comes with a set of features, which are specifically defined by physicians to 

evaluate and assess the quality of motion performed by the subjects. These features are 

then used to validate with respect to a stereo photogrammetric system to give a score to the 

subject‘s performance. The dataset also covers an assessment of the same performance by 

the physicians, collected through a clinical questionnaire.  

 

The KIMORE dataset consists of a large heterogeneous population of 78 subjects, 

divided into 2 groups with 44 healthy subjects and 34 with motor dysfunctions, which are 

then further classified into three separate classes. The classes are patients with back pain, 

patients who suffered from a stroke, and patients who suffer from Parkinson‘s disease. All 

the participants perform five different exercises. The exercises are mentioned below: 

 

1. Lifting of the arms 

2. The lateral tilt of the trunk with the arms in extension. 

3. Trunk rotation 

4. Pelvis rotations on the transverse plane 

5. Squatting  
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Figure 3: Features prescribed by Physicians for the five exercises. Row one contains the 

Primary outcomes and Row two illustrates the Control factors [10]. 

 

The features in the KIMORE dataset are classified into two categories, Primary 

Outcome (PO), and Control Factor (CF).  POs and CFs signify the movement of upper 

limbs and physical constraints during the exercises. Corresponding to the features, the 

dataset also provides two classes of scores, with values for PO in the range of 0 to 15 and 

CF in the range of 35, totaling to a range of 0 to 50. 

 

The KIMORE dataset is the only skeleton-based dataset that has a performance 

metric verified by a physician therefore to validate and test our method we will use the 

KIMORE dataset for experimentation. 
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4. Proposed Method 

Although KIMORE dataset provides us the data of 25 joint positions, orientation, 

and also depth video, we will utilize only the joint positions. In the future, this will allow 

us to easily calibrate our model for multiple similar datasets. The KIMORE paper has 

identified multiple handcrafted features for the exercise the patient‘s performs. 

 

The proposed frameworks have a feature extraction module that feeds into a 

Temporal Score Module as shown in figure 4. In the first module, we extract the features 

using two different methods. Firstly, we extracted the mentioned handcrafted features for 

all the exercises. Secondly, we devised a GCN-based graph encoding that will capture the 

features of each frame. The intuition for this second process is to analyze the effects of 

computer-generated features and human specified features. This module is targeted to 

capture the spatial features from the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Proposed framework has a feature extraction module and a temporal score 

module. The feature extraction module calculates the features from each frame and the 

temporal score module uses these features to predict a score. 
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Temporal Score 
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Next, we feed the collected features into a LSTM to understand the temporal aspects 

of the dataset. This module will output two separate values one for PO and another for CF. 

Keeping the structure of the LSTM same for both the feature extraction modules will allow 

more understanding about the impact of the processes. The specifics about the frameworks 

are discussed in the following pages. 

 

4.1. Handcrafted Features -LSTM (HF-LSTM) 

In this subsection, we introduce the handcrafted features that are prescribed in the 

KIMORE dataset. And then we introduce the next module, the LSTM. Finally, we discuss 

how the handcrafted features are used in the LSTM. 

 

4.1.1. Handcrafted features 

We start by extracting the features mentioned in KIMORE. The dataset has available 

scripts that help to extract the features using simple coordinate geometry. An illustration of 

the features is given in figure 3. The extracted features for different exercises are: 

 

Exercise 1: Lifting of the arms 

Extracted Features: Angles between right/left arm and upper torso in the sagittal 

plane (αl/r) represent the POs. Elbow extension angles (γl/r ), knee extension angles (φl/r ), 

hip angles (ψl/r), torso area (At ), hands distance (dh), ankle distance (da) are the CFs to be 

considered. 

 

Exercise 2: Lateral tilt of the trunk with the arms in extension. 

Extracted Features: Right and left angles between the anatomical segment defined 

by the hip and shoulder and the vertical axis (βl/r ) in the frontal plane (x, y)are defined as 

POs, while elbow extension (γl/r ), knee extension angles (φl/r ), hip angles (ψl/r ), hand 

distance (dh), shoulder-distance (ds ), hip-distance (dhip) and the vertical distance between 

the wrists and the shoulders (hl/r ) and the transverse plane coordinates of the hip (zhl/r , 

Xhl/r ) normalized to zero mean, are the CFs. 
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Exercise 3: Trunk rotation 

Extracted Features: PO is the horizontal distance between the elbows (dx), 

normalized with respect to the maximum variation. The elbow extension angle (γl/r ), 

shoulder extension angles (ηl/r ), knee extension angles (φl/r ), hip angles (ψl/r ), shoulder-

distance (ds ), hip-distance (dh) the distance between the wrists and the shoulders (hl/r ) 

and the depth coordinates of the hip (zhl/r ) normalized to zero mean, are the CFs. 

 

Exercise 4: Pelvis rotations on the transverse plane 

Extracted Features: POs are given by the spine base trajectories, normalized to zero 

mean, in the transverse plane (x, z), to ensure that the subject‘s position is independent of 

the sensor. The shoulder distance (ds), hip-distance (dh), elbow extension (γl/r), knee 

extension angles (φl/r ) and the depth coordinates of the shoulders (zsl/r ) normalized to 

zero mean, are the CFs. 

 

Exercise 5: Squatting. 

Extracted Features: The right and left knee angles in the sagittal plane (θl/r ) are 

POs. Hand distance (dh), shoulder-distance (ds), hip-distance (dhip), knee distance (dk), 

ankle distance (da), torso area (At ), the distance between hand and shoulder (dsl/r ) and 

the transverse plane coordinates of the shoulder (zsl/r , xsl/r ) normalized to zero mean, are 

the CFs. 

 

4.1.2. LSTM 

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) 

architecture used in the field of deep learning. Unlike the standard feed-forward neural 

networks, the LSTM also has feedback connections. Therefore along with the ability of 

processing single data points, it can also process entire sequences of data, such as videos. 

LSTM networks are most commonly used for processing, classifying, and making 

predictions based on time series data sets, since there can be lags of unknown duration 

between important events in a time series. As RNNs are known to encounter the vanishing 

gradient problem during training, LSTMs was developed to solve this problem. The LSTM 

setup most commonly used in the literature was originally described by Graves and 

Schmidhuber [11]. The basic mathematical implementation of the LSTM node can be 

defined as shown below in eqn 1.   
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ft = σg(Wf xt + Ufht−1 + bf) 

it = σg(Wi xt + Uiht−1 + bi) 

ot = σg(Wo xt + Uoht−1 + bo) 

 ̃t = σc(Wc xt + Ucht−1 + bc) 

ct = ft∘ ct−1 + it∘ c˜t 

ht = ot∘ σh(ct)      (1)  

 

Here, xt ∈ ℝd is the input vector to the LSTM unit and ft ∈ ℝh is the forget gate‘s 

activation vector. it ∈ ℝh input/update gate's activation vector, ot ∈ ℝh output gate's 

activation vector, ht ∈ ℝh hidden state vector also known as output vector of the LSTM unit 

and  ̃t ∈ ℝh cell input activation vector, ct ∈ ℝh cell state vector. Where, W ∈ ℝh×d, U ∈ 

ℝh×h and b ∈ ℝh weight matrices and bias vector parameters need to be learned during 

training where the subscripts d and h refer to the number of input features and a number of 

hidden units, respectively.  

 

Figure 5: HF-LSTM model Architecture; each frame of skeleton data, for a single exercise, 

is used to create a feature vector of size (1×f ) where f is the number of features and 

forwards it to the LSTM that evaluates the features to predict the output scoress 
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4.2. GCN-LSTM 

In this subsection, we discuss the concepts of graph convolutional networks and how they 

are structured. Then we move on to elaborate on how they work with a temporal score 

module to predict a score. 

 

4.2.1. Graph representation of the skeleton 

We define a skeleton graph using a set of nodes and a set of edges that are 

connecting the nodes. Each node represents a body part or joint in the body. The edges 

represent the connection between the body parts. For example, the wrist is connected to the 

elbow. 

We use the common design for graphs based on anatomy. To be precise, we initialize 

an undirected graph for each time step of the exercises with Gt = {Xt, Et}. Where, Xt = {Xt1, 

Xt2, ..., XtN } is the set of nodes at time t, in which each node represents a body part. N is 

the total number of nodes. Et = {(Xti, Xtj ) : Xti, Xtj ∈ Xt, Xti ∼ Xtj} is the set of edges in the 

graph, where Xti ∼ Xtj means the node i and node j are connected with an undirected edge. 

An example of the skeleton graph is depicted in Figure 6. Et can be specified by the 

adjacency matrix, At ∈ ℝN×N
. 

 

        {
                  ∈    

                           
      (2) 

 

For each node Xti, the associated coordinates are 3D joint positions. Therefore, each 

node has a 3-dimensional coordinate and Xt ∈ ℝ 
N×3

. Xt can also be called the raw 

representation of the skeleton coordinates. The graph generated here acts as a brief system 

to specify the dependency among different body parts. We assume the graph structure does 

not change over each time frame, i.e., At remains the same for all t. 

 

4.2.2. Graph Convolution Network 

Initial variants of neural networks only allowed regular data or Euclidean data, 

whereas a large number of real-world data have an underlying non-Euclidean, graph 

structure. The use of graph-based data structures has led to recent improvements in 

machine learning with graph neural network (GNN). In recent years many variants of GNN 

are being advanced, among which Graph Convolutional Network (GCN) is widely utilized. 
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Nowadays, GCN is also considered to be one of the basic variants of graph neural 

networks. Similar to the convolutional layers in convolutional neural networks, the 

‗convolution‘ in GCN has the same principle. It denotes the use of multiplying the input 

neurons with a set of weights which are called filters or kernels. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Skeleton Graph; consisting of the nodes (body joints), and edges connecting the 

joints. 

 

Using the graph, we consider a multi-layer Graph Convolutional Network (GCN) with 

the following layer-wise propagation rule. 

 

Hl+1 = σ ( ̃ 
 

   ̃  ̃ 
 

       )     (3) 

 

Here, Ã = A+IN is the adjacency matrix of the undirected graph G with added self-

connections, and  ̃ii= ∑j Ãij its diagonal degree matrix.  IN is the identity matrix, and Wl is 

a layer-specific trainable weight matrix. σ (·) denotes an activation function, such as the 

ReLU(·) = max(0, ·).  Hl ∈ ℝ 
N×D 

is the matrix of activations in the l
st
 layer; H(0)=X.  

 

The dot product of the adjacency matrix and node features matrix represents the sum 

of neighboring node features. Thus the function is iterated till l=2, to collect the features of 

nodes that are 2 hops away.  
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The collected feature for H(2) is the feature list extracted using GCN, at a certain time 

frame. The feature matrix is flattened and inputted into the temporal score module of the 

framework. Here the same temporal score module as HF-LSTM is employed, i.e a LSTM. 

The detail of this module is elaborated in section 4.1.2. The LSTM takes the flattened 

feature vector and outputs two predicted values, PO and CF. An overview of the 

framework is shown in figure 7. 

 

 

 

 

Figure 7: GCN-LSTM model Architecture; each frame of skeleton data, for a single 

exercise, is inputted in a single GCN layer which extracts the features and forwards it to 

the LSTM that evaluates the features to predict the output scores. 
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5. Experimentation and Results 

This chapter is divided into three subsections. We start by discussing how we 

implemented the proposed framework. Here we have shown the tools we utilized and the 

specifications of our model. This section also contains the training parameters and 

computer specifications of the machine we executed on. Then in the second subsection, we 

discuss the results achieved for each model respectively.  Finally, we discuss the 

comparisons between the two models. 

 

5.1. Implementation 

We implement the proposed frameworks using Pytorch [12] and PyTorch Geometric 

[13]. The handcrafted features are calculated using Matlab by importing the scripts 

provided by the dataset, KIMORE. The scripts have defined equations that are utilized to 

calculate the angles and distances from the coordinates.  The GCN is implemented using 

the matrix multiplication defined in the above section in eqn. (3). We configure the GCN 

kernel size to 3, i.e. the encoded features by the GCN will comprise of the information 

about neighboring nodes that are 2 hops away. At any frame or time step t, the raw 

skeleton representation Xt is given as an input to the defined GCN. The output of the GCN 

is then flattened into a single vector and inputted in the LSTM. This flattened vector acts as 

our feature vector for the single frame. Unlike the Handcrafted features, the numbers of 

GCN features were not limited, thus giving us an area for experimentation. We tried to 

check the best possibilities by implementing 3 types of outputs for the GCN.  

 

For the second phase of the framework, a single layer of LSTM units was utilized to 

accept the frames of the feature vector and generate an output. The output of the last time 

step of LSTM is used as the final image of the exercise. We feed it into a fully connected 

layer with ReLU activation function, because all the scores predicted are above zero. 

Dropout was added between the layers to avoid overfitting. The initial learning rate was set 

to 0.001 and ran for 50 epochs, where each epoch had a batch size of 8. As the total 

number of participants in the dataset is only 78. We evaluated the model using a 20% split 

of test data and the other 80% was used for training.  
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● Preprocessing: 

Once the calculation of the features is completed, we then normalize the features 

using a min-max scalar transform. Secondly, we perform a similar normalization for the 

scores. Since we already know that the maximum score of PO is 15 and the maximum 

score of CFs is 35, we divided the scores by their maximum value. Now all the values are 

ready for our next module, the temporal score module to predict a score. 

 

The model was implemented on an ASUS GL503GE Laptop with Intel Core i7 8
th

 

gen processor CPU, with 16GB Ram and a 1TB hard disk, with an NVIDIA 1050 ti 

Graphics Card. 

 

In this experiment, we only changed the first module, feature extraction module, and 

kept the LSTM specification fixed, along with the fully connected layers. The framework 

is trained in a supervised manner. We employ the use of RMSE. The RMSE has been used 

as a standard statistical metric to measure model performance in meteorology, air quality, 

and climate research studies. Since the KIMORE dataset provides a single score for the PO 

and CF each, the difference between the predicted value and original value acts as an 

acceptable measure of error. Furthermore, as the values are squared before the average, this 

particularly helps to provide higher error for larger values. This helps us narrow the 

possibility of predicting values too far off. The mathematical intuition is given in Eqn 4. 

 

     √∑
   ̂     

 

 

 
      (4) 

Here, n is the number of exercises in the batch, yi is the actual score and  ̂i is the 

predicted score. 

 

 We repeat the procedure with the same setting while shuffling the dataset, and report 

the average to account for the random initializations. The results obtained through this 

process are discussed in the following section. 
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5.2. Results 

We employed the use of five-fold cross-validation to evaluate our model. Cross-

validation is a statistical method to evaluate machine learning models whose goal is a 

prediction. A round of cross-validation partitions the data into complementary subsets, 

where training is performed on one set and validation testing is performed on the other. 

Here, to reduce variability, we perform five rounds or five folds of cross-validation and 

average the predictive performance.  

 

5.2.1. HF – LSTM 

As the scores that we hope to predict were set by the physicians to use these 

handcrafted features, intuitively, the use of this method should yield a very low RMSE 

loss. The training loss and the test loss for the five exercises, achieved in the five folds are 

listed in table 1 and table 2, respectively. The results have the following indications. Firstly 

we can use a LSTM network to predict a viable score for physical rehabilitation exercises 

with an average RMSE loss of 0.290.   

 

 

Table 1: Train for all exercises using HF-LSTM 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Ex1 0.219 0.146 0.14 0.149 0.164 0.1636 

Ex 2 0.273 0.201 0.19 0.253 0.223 0.228 

Ex3 0.322 0.288 0.2496 0.21 0.326 0.27912 

Ex4 0.244 0.186 0.235 0.214 0.226 0.221 

Ex5 0.242 0.22 0.207 0.183 0.214 0.2132 

Total Average RMSE: 0.220984 
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Table 2: Test loss for all exercises using HF-LSTM 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Ex1 0.253 0.331 0.341 0.298 0.313 0.3072 

Ex 2 0.343 0.28 0.166 0.288 0.242 0.2638 

Ex3 0.318 0.383 0.302 0.396 0.301 0.34 

Ex4 0.265 0.251 0.312 0.276 0.312 0.2832 

Ex5 0.324 0.239 0.215 0.249 0.259 0.2572 

Total Average RMSE: 0.29028 

 

 

5.2.2. GCN-LSTM 

We first implement this framework for three different configurations of GCN on just 

one dataset, to select the optimal model for our framework. The first configuration is such 

that the final output Hl is a matrix of size (1×25), which when flatten gives a vector of 25 

features. Secondly, we try the configuration such that the final output Hl is the matrix of 

size (4×25), i.e. when flattened we obtain 100 features. Similarly, the last configuration has 

an output matrix of (16×25), resulting in a flattened vector of 400 features. The results 

obtained by varying the GCN are given in table 2. 

 

 

Table 3: Train loss and test loss for exercise 1 using different variations of GCN-LSTM 

 25 Features 100 features 400 features 

Train-loss 0.193 0.179 0.175 

Test-loss 0.203 0.168 0.295 

 

As the table clearly shows, even though the GCN with 400 features has the lowest 

training loss, it has the highest test loss. As the GCN with 100 feature output has the 

highest validation accuracy, we pick this configuration for the rest of our models. The 

results of the five exercises for training and testing are given in table 4 and 5 respectively.  
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Here we can see that there is a significant improvement in comparison to the previous 

framework. We have achieved an average RMSE loss of 0.191. 

 

Table 4: Train loss for all exercises using GCN- LSTM 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Ex-1 0.179 0.198 0.188 0.184 0.191 0.188 

Ex2 0.189 0.226 0.212 0.201 0.217 0.209 

Ex3 0.217 0.1933 0.215 0.204 0.201 0.20606 

Ex4 0.201 0.195 0.205 0.21 0.204 0.203 

Ex5 0.179 0.211 0.193 0.211 0.195 0.1978 

Total Average RMSE: 0.200772 

 

 

Table 5: Test loss for all exercises using GCN- LSTM 

 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average 

Ex1 0.168 0.259 0.202 0.196 0.234 0.2118 

Ex2 0.161 0.161 0.172 0.169 0.176 0.1678 

Ex3 0.18 0.221 0.161 0.186 0.234 0.1964 

Ex4 0.227 0.2108 0.228 0.234 0.174 0.21476 

Ex5 0.168 0.155 0.158 0.207 0.158 0.1692 

Total Average RMSE: 0.191992 
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5.2.3. Comparison between the models: 

In every exercise the GCN-LSTM has outperformed the HF-LSTM framework. A 

comparison between their results is illustrated in the figure 8. 

 

 

Figure 8: Comparison between test RMSE loss of handcrafted feature-LSTM and 

GCN-LSTM; on every exercise, The GCN-LSTM out performs the handcrafted-LSTM 

model. 

 

The following figures give an example (just one fold) of the train loss achieved using the 

frameworks. This indicates that most of the models reached their minimum loss within 30 

epochs. The extra epochs help strengthen the fact that the model has had adequate epochs 

to train.  
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Figure 9: Train loss achieved for Exercise 1 in both models in fold 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Train loss achieved for Exercise 2 in both models in fold 1. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Train loss achieved for Exercise 3 in both models in fold 1. 

HF- LSTM Exercise 1 GC-LSTM Exercise 1 

x-axis: No of Epochs | y-axis: Train RMSE Loss 

HF- LSTM Exercise 2 GC-LSTM Exercise 2 

x-axis: No of Epochs | y-axis: Train RMSE Loss 

HF- LSTM Exercise 3 GC-LSTM Exercise 3 

x-axis: No of Epochs | y-axis: Train RMSE Loss 
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Figure 12: Train loss achieved for Exercise 4 in both models in fold 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Train loss achieved for Exercise 5 in both models in fold 1. 

 

 

 

 

 

 

 

 

HF- LSTM Exercise 4 GC-LSTM Exercise 4 

x-axis: No of Epochs | y-axis: Train RMSE Loss 

HF- LSTM Exercise 5 GC-LSTM Exercise 5 

x-axis: No of Epochs | y-axis: Train RMSE Loss 
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6. Conclusion 

6.1. Summary 

Skeleton based quality of human movement assessment is a significant challenge 

with numerous applications ranging from sports, skill assessment to rehabilitation exercise 

assessment. In this project, we have proposed two frameworks for assessing human 

movement quality, which can be trained using a relatively small dataset. We explicitly 

tackle the problem by identifying two key elements, spatial dependencies, and long-term 

temporal dependencies. Firstly we extract the spatial features using either of the two 

different modules. We proposed using either handcrafted features (defined by physicians) 

or using GCN to automatically generate features. The module is succeeded by a LSTM 

used to understand the temporal aspect of the movement. The proposed model is 

demonstrated on the KIMORE dataset. The HF-LSTM performed well achieving an RMSE 

loss of 0.290. On the other hand, the GCN-LSTM performed outstandingly well in 

comparison to its prior, reaching an average RMSE loss of 0.191. 

 

This establishes the claim that an LSTM can more accurately predict the result when 

it can take advantage of the whole data, instead of using only the physician‘s specified 

features. Furthermore, the project also proves that both GCN-LSTM and HF-LSTM can 

learn spatiotemporal connections in human movement data. 

 

6.2. Limitations  

Assessment of rehabilitation exercise is fairly an underdeveloped topic and thus 

comes with a lot of limitations. The most significant challenge, when it comes to deep 

learning-based models, is the lack of large datasets. This also acts as another indicator of 

the lack of attention from researchers. The largest dataset, the one we used has 78 subjects, 

performing 5 different exercises. Since each exercise requires a separate model for 

evaluation, we are limited to only 78 sets of samples for both training and testing. While 

another skeleton dataset has a higher number of participants, they do not have the required 

physician‘s evaluation for a supervised training method. Secondly, the data in KIMORE 

are classified into 5 categories, expert, non-expert, patients with Parkinson‘s disease, 

patients with back pain, and patients who suffered from a stroke. The number of patients in 

each category is not consistent, thus the model is likely to underperform.  
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Another big limitation is the real-world use of the framework as it uses separate 

hardware, Kinect, to collect the data. The mass number of patients, whom we are trying to 

help, is unlikely to have a Kinect device at their home. To take advantage of our 

framework they would require investing in a device, a financial investment that may not be 

useful anyway after recovery unless they plan to play games with it. 

 

 

6.3. Future Work 

6.3.1. Performance improvements  

● Add new models 

The proven frameworks all had a goal to capture the essence of spatial-temporal data. 

Even though they were able to learn the features; there is a lot of room for improvement. 

When working with time series and graph data, newer variations of GCN for example, 

Spatio-Temporal Graph Convolutional Networks (STGCN) have shown promising results 

in traffic forecasting. Similarly, we plan to also implement more proven spatial-temporal 

models such as MS-GDN, in the hope of achieving higher accuracy. 

 

● Generate new Dataset 

One of the biggest challenges faced by the quality of human movement assessment is 

that there is no large skeleton dataset, which also comes with an acceptable movement 

score. Therefore we plan to generate a dataset with a larger number of participants, ranging 

to more exercises, that is also evaluated by physicians. 

     

6.3.2. Usability improvements   

● Image-based 

One of the biggest limitations of our proposed models is that we use skeleton data 

collected by a separate device, Kinect. It is very unlikely to be existing in the household of 

patients. Whereas, most patients already own a camera or a device with an integrated 

camera in this modern era. If we can generate an acceptable model that uses a RGB camera 

to map movement onto skeleton joints, the usability of this framework will increase 

dramatically.  
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● Movement recognition and assessment 

The current frameworks are limited to only assessing one exercise. The proposal of a 

single framework that recognizes the movement and then provides an assessment based on 

the exercise will improve the user experience drastically. 

 

● Real-time responses 

Currently, the framework only gives a score for the whole exercise. When a patient 

uses it, they can use the score to know their movement accuracy. But if the system gives 

real-time feedback to improve the accuracy of the movement, the patient can fix their 

motion and adjust accordingly. 
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