
Do Computer Scientists need to “Learn” Calculus of

Variations?

In regular differentail calculus courses, one picks a function ( which can be thought of as an
element of a vector space ) and they vary its argument and then see how it changes etc. This
is the standard story. But there are other calculus’ too. Let us consider a functional which
is a map from a vector space V ( which in our case will be a function space ) to the reals:

I : Φ ∈ V → R, I[Φ] =

∫
F (Φ(x),∇Φ,x) dx (1)

whwere F is a function of Φ, its derivatives and on x. But note I is not a function of x.
We will hereafter think that the change of Φ is caused by the change of its functional

form but not in its argument x. Let me give an example by considering a simple example in
1D. Say Φ(x), as its basis, has 1, x, x2, so that

Φ(x) = α1 + βx+ γx2 (2)

So the change in the function (in this view) is caused by the change in the components
{α, β, γ}.

Therefore, when the basis (2) is used in the example (1) one should get

I = I(α, β, γ)

Therefore after a choice of finite number of “basis” for the function, the problem will reduce
to a problem of multivariate calculus.

Let us look at a more standard example, the problem of “harmonic maps”. The“energy”
functional for these type of maps is given by

I =
1

2

∫
dDx [ ∇Φ(x) · ∇Φ(x) ] . (3)

If the function I is an extremum, its change under an infinitesimal change in Φ should be
zero ( just like the extrema of a function ):

I[Φ + δΦ]− I[Φ] ≡ E[Φ] · δΦ = 0⇒ E[Φ] = 0 (4)

for infinitesimal δΦ, where we have tossed out terms quadratic and higher in δΦ. For example
(2), this change will be caused by the changes (δα, δβ, δγ) i.e. for each component of the
vector δΦ which are all infinitesimals of first order.

Let us compute the variation when one has (3) for our system ( which we take to be one
dimensional ) :

I[Φ + δΦ]− I[Φ] ≡ δI =
1

2

∫
dx

[(
dΦ

dx
+
d(δΦ)

dx

)2

−
(
dΦ

dx

)2
]

=

∫
dx

dΦ

dx

d(δΦ)

dx

1
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where we have dropped the term quadratic in δΦ ( rather its derivative ).
Integrating by parts and dropping the endpoint terms ( which are zero as δΦ is zero at

those endpoints), one gets

δI = −
∫
dx

d2Φ

dx2
δΦ

As δΦ is arbitrary everywhere along the curve and this is true for any infinitesimal δΦ around
the ”stationary” point, we are then led to the equation for the extrema:

d2Φ

dx2
= 0 (5)

which is nothing but the Euler-Lagrange equation for this system.
Now I am going to claim that if the discretized theory has the right symmetries as the

original theory - the ensuing relation will be the correct finite difference equation which will
give the same equation in the continuum limit.

Noet that the functional (3) is invariant under x↔ −x and just simply means the energy
is independent of the orientation of the line. This feature must be respected in the discrete
version, so that the derivative must be replaced by left and right finite differences at each
point labeled by xi:

I[{Φi}] =
∑
i

(
Φi+1 − Φi

∆x

)(
Φi − Φi−1

∆x

)
=

1

(∆x)2

∑
i

Φi

[
(Φi+1 + Φi−1)− Φi

]
As before we vary Φi independently ( i.e. pointwise )

δI =
∑
i

δΦi

[(Φi+1 + Φi−1)− 2Φi

(∆x)2

]
As δI = 0 under δΦi which are ( linearly) independent one must have the coefficients of δΦi

zero for each i , leading to [(Φi+1 + Φi−1)− 2Φi

(∆x)2

]
which is nothing but the discrete analog of (5).

So the apparent lesson is that if we understand the correct finitary approximation to the
continuum theory, one just can use the standard multivariate calculus techniques without
recoursing to Euler-Lagrange eqs. or some such things.
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